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In this paper, the properties of the strict Chebyshev solutions of the linear matrix
equation AX+ YB= C are investigated, where A, B, and C are given matrices of
dimensions m x r, s x n, and m x n, respectively, m > r, n > s. © 1988 Academic

Press, Inc.

1. INTRODUCTION

Let vltmn be the space of real (m x n)-matrices. We consider the linear
matrix equation

AX+ YB=C, (1)

where A = (aid E vltm" B = (blj) E vltsn ' and C = (cij) E vltmn are given and
X = (Xkj) E vltm , Y = (Yi/) E vltms ' We can write (1) in the form Mx = C with
M = (In ® A, BT ® 1m) and appropriate definitions of the vectors x and c,
where ® denotes the Kronecker product. The equation (1) has a solution
X and Y if and only if (see [3])

(I -AA -) C(I - B-B) =0, (2)

where A - is any g-inverse of A such that AA - A = A. In this paper we
assume that Condition (2) is not satisfied and we find a Chebyshev solution
of (1). Matrices X 00 and Y00 are a Chebyshev solution of (1) if

IIAXoo + Y00 B- Clloo = boo == min IIAX+ YB- CII 00' (3)
X,Y

where

IIAII 00 = max laijl.
i,J
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The matrix Zoo = AX00 + Y00 B which satisfies (3) is a Chebyshev
approximation of C by matrices of the form AX+ YB. In the general case,
for arbitrary A and B, the Chebyshev approximation of C is not unique.
The main purpose of this paper is to investigate the properties of the strict
Chebyshev approximation Zoo of C, which is determined uniquely.
However, the strict Chebyshev solution X 00 and Y00 of Eq. (1) is not
unique. The concept of strict Chebyshev solution of an overdetermined
linear system, due to Rice, has been formulated in a constructive manner
by him [8,9] and by Descloux [5].

We assume in what follows that Condition (2) is not satisfied and that
m>r, n>s.

2. MAIN RESULT

We now consider the linear matrix equation (1). We introduce some
auxiliary notation and definitions.

ai' bi, Ci, dj-the ith column of AT, B, C, and CT
, respectively;

ej-the jth column of the identity matrix of order n;

r s

rif(X; Y) = L aikXkj+ L yub/}- cif;
k= 1 1= 1

where Z E vltmn •

Let the matrices Xp and Yp be the lp-solution of (1)

IIAXp+ YpB - ClIp = min IIAX+ YB - ClIp,
X,Y

where

1<p< 00,

We denote Zp = AXp+ YpB and rlJl = rif(Xp; Yp). The matrix Zp is deter
mined uniquely. We know that the matrices Xp and Yp are the lp-solution
of (1) if and only if they satisfy Condition P (see [10]), which means that
for j = 1, ..., n, the jth column of Xp is the lp-solution of the linear system

(4)
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and for i = 1, ..., m, the ith column of YJ is the lp-solution of

(5)

We introduce the following auxiliary definition.

DEFINITION. We say that X and Y, X E Am and Y E Am» satisfy Con
dition TC if for j = 1, ..., n, the jth column xj of X is a Chebyshev solution of
the linear system

(6)

and for i = 1, ..., m, the ith column Yi of y T is a Chebyshev solution of the
linear system

(7)

If the vectors xj and Yi (j= 1, ... , n; i= 1, ..., m) are strict Chebyshev
solutions of the systems (6) and (7), respectively, then X and Y satisfy
Condition TS.

Remark. If the systems (6) or (7) are consistent then their Chebyshev
solutions are equal to their solutions.

Let

Zoo = AXoo + YooB= lim Zp.
p~oo

(8)

This limit exists and the matrices X 00 and Y 00 are a strict Chebyshev
solution of (1) (see [5]). We denote

We have the following lemma (compare Theorem 3 in [11]).

LEMMA 1. Let the matrices X 00 and Y 00 satisfy (8). Then they satisfy
Condition TC.

Proof We consider the linear systems

Ax = Cj - Y 00 bj

BTy=di-X~ai

(j= 1, , n),

U= 1, , m).

(9)

(10)

Suppose that there exists j 1 (1 ~j 1 ~ n) such that the j 1 th column of X 00 is
not a Chebyshev solution of (9) for j = j I' Therefore there exists 6> 0 such
that
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Thus, by the lower semi-continuity of the function rPj, there exists (j > 0
such that

for ZE.A/j,

where

(11)

From (8) there exists Po such that Zp E.A/j for p > Po. Hence we obtain

for P>Po. (12)

By the properties of the lp-norm we have

Ilxll oo ~ Ilxllp~ml/P Ilxll oo '

lim Ilxllp= Ilxlloo'
p~oo

where XEfJl m
. Thus we obtain (see (12))

(13)

(14)

== e+ IIAli + Zpeh - chll 00

~ e+ m- I
/
p II Ali + Zpeh - chll p~ e+ m- I

/
p IIZpeh - chllp

because the), th column of Xp is the lp-solution of (4). Hence we have
(see (8) and (14))

IIZooej-c)loo ~e+ IIZooej-cjlloo,

which is a contradiction. Therefore, for) = 1, ..., n, the }th column of X 00 is
a Chebyshev solution of (9).

The same argument can be applied to prove that the columns of Y~ are
the Chebyshev solutions of (10), because the columns of YJ are the
lp-solutions of (5). This completes the proof. I

We now prove that the matrices X 00 and Y 00 satisfy Conditions TS.

THEOREM 1. Let X 00 and Y 00 satisfy (8). Then they satisfy Condition TS.

Proof We now prove that the }th column XJOO) of X 00 is a strict
Chebyshev solution of (9) (l ~}~n). If the system (9) is consistent then
xJoo) is its solution and simultaneously it is a strict Chebyshev solution. We
now assume that the system (9) is overdetermined.
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r s

r;(z)= L a;kzk+ L ylr')blj-cij
k=1 1=1

(15)

and let Pi' ~I' 11/; (i= 1, ..., t) be the deviations, the characteristic sets, and
the sets of the appropriate Chebyshev solutions of (9) defined in the con
struction of the strict Chebyshev solution of (9) (see [5], compare [7]). It
is known that the strict Chebyshev solution of (9) is the unique solution of
the consistent linear system

r;(z) = e(i) Pk> iE9lk (k= 1, ..., t), (16)

where e(i) = 1 or - 1 for all Z E1fk. We now prove that xJ (0) satisfies the
system (16). The vector xJoo) is a Chebyshev solution of (9) (see Lemma 1),
so we have

(17)

where ~ is a linear manifold, ~=v(O)+ker(A(l»), V(O)E~, and A(I)
denotes the matrix of the system

(18)

We recall that the linear manifold ~ is the set of solutions of (18), so xJoo)
satisfies (18). Therefore we have

Suppose that xJoo) ~ "111;. Thus we have (we denote t! = {I, ..., m} and
r§1 =t!\~d

P2 = min max Ir;(z)1 < max Irlt)l,
ze:JF1 ;E~I ie-;§t

(19)

where r;(z) is determined by (15). Let ZE~. Then z-xJoo)Eker(A(l») see
(17)). Therefore we obtain

(20)

where h = (hI' ..., hr)T E~r. We define

if!j(Z) = max IZij-cijl- min max I±a;khk+Zij-Cij!,
;E~I hEker(A(l») iE~1 k= I
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where Z = (zij) E .limn. From (19) and (20) we have that there exists e> 0
such that

(21 )

The function ljJj is semi-lower continuous. Therefore there exists /> > 0 such
that (see (11))

for Z E .110 , (22)

Thus there exists Po such that (see (8)) ZpE.IIo for P>Po. Therefore we
have (see (21))

for P>Po.

Let

where

r

fl pl = L a;khlt l, i E $.
k~l

We have flpl=O for iE~l' because h(P)=(h~Pl, ...,h~plfEker(A(ll).
Therefore we obtain

and consequently

L Irlfll p= L Ifl pl + rlfll p
ieatl ieatl

L Irlfll p~ L Ifl pl + rlfll p
ie 1§1 ie t§1

(23)

(24)

since the jth column of Xp is the lp-solution of system (4) and equality (23)
holds. From (21}-(24) and (13) we obtain (P>Po)

(25)
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where m l is the number of elements in the set 9l!. Let

( )

I!P

J/ = lim L Irll)1 P •
p- 00 iE~1

This limit exists because we have (8) and the relation (14) holds. Therefore
we obtain (see (25)) J/ ~ 8 +J/, which is a contradiction. Hence the
vector xj (0) belongs to the set "If; and

The same argument may be applied to prove that xj ool E1f'k for
k = 3, 4, ..., t. This implies that xjoo) satisfies the system (16), so xjoo) is a
strict Chebyshev solution of (9).

Analogously we prove that for i = 1, ..., m, the ith column of y~ is a
strict Chebyshev solution of (10), which completes the proof. I

In [13] we presented the following example.

EXAMPLE 1. Let m=6, n=4, r=2, s= 1, and B= [1,1,1,1]

0 0 0 1 -1

1/8 0 -1 0 1

1/4 0 1 -1 0
A= c=

1/2 1 -1 0 0

3/4 -1 0 1 0

1 1 0 0 -1

The deviation PI for Eq. (1) is here equal to 0.98846154 and the charac
teristic set 9l! has elements

{(i,j): Ieul = 1} u {(6, 2)}.

It is easy to verify that the matrices X = 0 and Y = 0, X E .Arn , Y E .Am"
satisfy Condition TS. Unfortunately, they are not a Chebyshev solution of
(1). This implies that Condition TS is not sufficient for X and Y to be a
strict Chebyshev solution of (1) in the general case.

3. CONCLUSIONS

We now consider a particular case of the linear matrix equation (1). We
assume

m=r+ 1, n=s+ 1, rank(A) = r, rank(B) = s. (26)
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We recall that we have assumed that Condition (2) is not satisfied. We
introduce auxiliary notation.

A~the matrix obtained from A by deleting the ith row;

Bj-the matrix obtained from B by deleting the jth column;

wj = (_I)i det(A;),

g; = {i: wj#O},

uj = (-1)j det(B);

Y; = {j: uj # O};

'+!
where IIwu T 111 = Ilwll l Ilull! and Ilwll! = L Iw;\'

i~!

It is easy to verify the following corollary (compare Theorem 2.1 in [6]).

COROLLARY 1. Let m = r + 1 and rank(A) = r. Then the vector Z E (jt' is
a strict Chebyshev solution of the linear system Az =g if and only if

where rj(z) is the ith component of Az-g.

We know that the set

{(i,j): i E Y; ,j E Y;}

is the characteristic set of Eq. (1) (see [13]). Namely, the matrices X and Y
are a Chebyshev solution of (1) under the assumptions (26) if and only if

for i E g; , j E Y; (27)

and Irij(X; Y)I ~ Irl for other pairs of indices (i,j). We define the matrix
D = (dij)' DE JI,+ I.s+ I'

iEg;, JEY;,
i ¢ g; or j ¢ Y;,

where l!Xijl ~ Irl. In [12] we proved that the equation

AX+ YB=C+D (28)

is consistent and each of its solutions is a Chebyshev solution of (1) under
the assumptions (26). If we take !Xij = 0 for i ¢ g; or j ¢ Y; then the solutions
of (28) are the strict Chebyshev solutions of (l). Therefore we obtain the
following corollary (compare Corollary 1).
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COROLLARY 2. The matrices X and Yare a strict Chebyshev solution of
(1) under the assumptions (26) if and only if

r ..(X' Y) = {sgn(w;u) y,
IJ' 0,

ie9;, je~,

i¢9; or j¢~.
(29)

We now prove that X and Yare a strict Chebyshev solution of (1) under
the assumptions (26) if and only if they satisfy Condition TS.

THEOREM 2. Let the assumptions (26) be satisfied. Then the matrices X
and Yare a strict Chebyshev solution of (1) if and only if they satisfy Con
dition TS.

Proof The first part of the theorem follows from Theorem 1. We now
assume that X and Y satisfy Condition TS. Thus X and Yare a Chebyshev
solution of (1) (see Theorem 3.1 in [13 J). Since the jth column of X is a
strict Chebyshev solution of (4) and the ith column of y T is a strict
Chebyshev solution of (5), we have (see Corollary 1)

This implies

riX; Y)=O,

rij(X; Y)=O,

rij(X; Y)=O,

for i¢9;, j=l, ...,n,

for j ¢ ~, i = 1, ..., m.

for i ¢ 9; or j ¢ ~.

Moreover, the matrices X and Y satisfy the relations (27) because they are
a Chebyshev solution of (1), so the relations (29) hold. This completes the
proof. I

Now, let r =s = 1, A "# 0, B"# 0, and let m, n be arbitrary. If the matrices
X and Y satisfy Condition TC then they are a Chebyshev solution of (1)
(see [13J). After this, Condition TS is not suficient for X and Y to be a
strict Chebyshev solution of (1). The following example shows it.

EXAMPLE 2. Let m=n=4, r=s= 1, AT=B= [1,1,1, 1J, and

C= [-~ -~ ~ ~l'° ° 2-2
° ° -2 2

The pairs X= yT = [0,0,0,0] and X= [0,0, 1, 1], Y= [0,0, -1, -1Y
are both Chebyshev solutions of (1) and they satisfy Condition TS. We
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have R(X; Y) # R(X; Y). The matrices X and Yare a strict Chebyshev
solution of (1).

Methods for finding the strict Chebyshev solution of an overdetermined
linear system are known (see [1, 2, 4, 6]). The direct application of these
methods to the solution of (3) is not advisable because we cannot utilize its
special form. Unfortunately, there does not exist an algorithm which
utilizes the special form of (1 ).
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